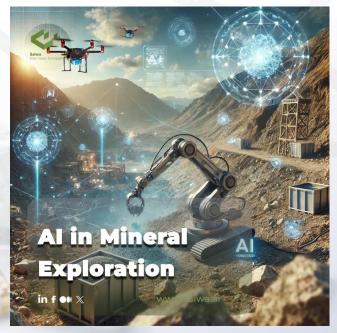


An Artificial Intelligence-driven Approach to Mineral Exploration in Botswana

James AH Campbell
Managing Director, Botswana Diamonds plc

African Exploration Showcase

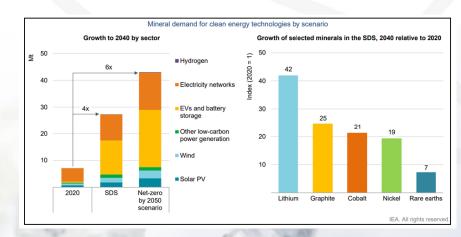
Geological Society of South Africa
Johannesburg
13 November 2025


African Exploration Showcase 2025

An Artificial Intelligence-driven Approach to Mineral Exploration in Botswana

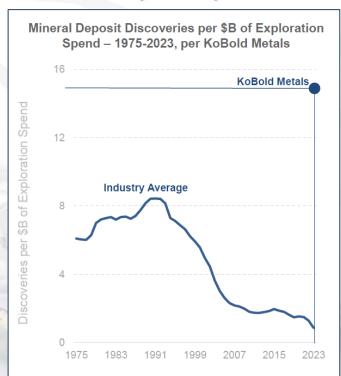
AGENDA

- Global demand: exploration crisis
- Al foundations: remote sensing, geophysics, data fusion
- Company landscape & case studies
- Cost/time benefits: juniors vs majors
- BOD strategy: dataset & Al-screened targets
- Polymetallic & kimberlite examples
- Al vs traditional methods: future of Al


Saiwa, 2025

Global Demand for Critical Minerals

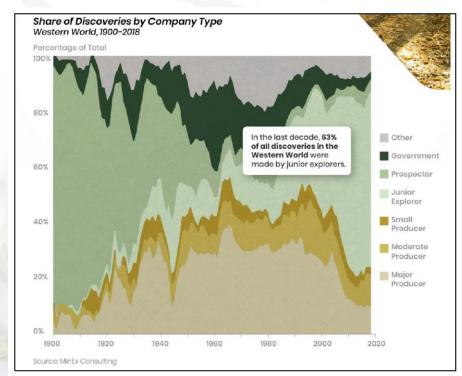
- The energy transition is accelerating demand for copper, lithium, cobalt, nickel, graphite and rare earths used in batteries, renewables and grid storage.
- Authoritative outlooks indicate lithium demand may rise more than fivefold by 2040, with nickel, cobalt and rare earths at least doubling over the same period.
- Botswana is well placed geologically with highly prospective Cu-Ni-Co and PGM terranes that complement its world-class diamond endowment.
- ◆ Absent discoveries, supply gaps of ~30–40% for key minerals such as copper and lithium are forecast by the mid-2030s, sharpening the exploration imperative.



Deloitte, 2024

Exploration Crisis: Rising Costs, Fewer Discoveries

- Global discovery rates have fallen significantly since 2010 despite higher spend; greenfield success is commonly cited at ~0.02% (≈1 in 5,000 drillholes).
- Shallow, outcropping deposits are largely exhausted; deeper targets under cover require new geoscience and computational approaches.
- Escalating drill and logistics costs erode ROI and suppress risk capital, particularly for juniors, prolonging the 'orphan period' between campaigns.
- These structural headwinds motivate systematic, data-driven targeting to raise hit rates and compress cycles.

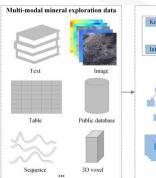


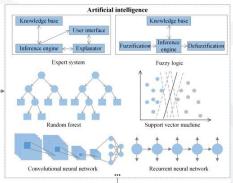
Bond, 2025

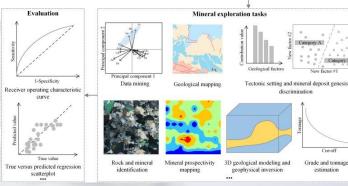
Juniors vs Majors in Discovery

- Historically, >60% of commercial discoveries are credited to junior explorers who specialise in high-risk front-end work.
- Majors increasingly replace reserves by acquiring advanced projects rather than leading greenfield search in frontier terrains.
- Tighter capital markets and higher failure rates (>90% for juniors) impede the pipeline that majors ultimately rely upon.
 - If the Junior is correctly incubated, the failure rate is considerably lower.
- Al-enabled prospectivity can lower technical risk for juniors, improving financing potential and partnership options.

Visualcapitalist, 2024

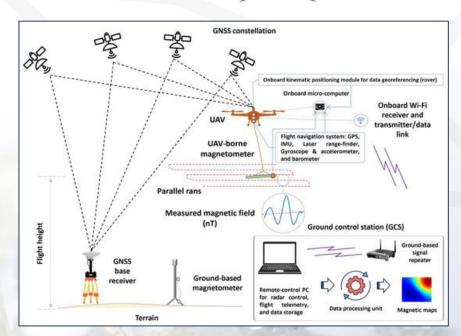



Al foundations: remote sensing, geophysics, data fusion


Artificial Intelligence in Mineral Exploration

BOTSWANA
DIAMONDS PLC

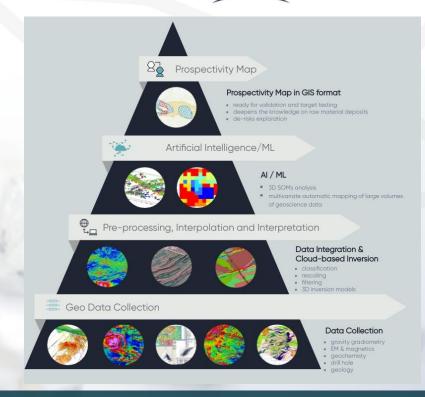
- Al integrates geological, geochemical, geophysical and remote-sensing data to reveal patterns that are difficult to detect with manual methods.
- Common techniques include supervised and unsupervised learning, ensemble models, anomaly detection and Bayesian decision frameworks.
- Outputs are prospectivity maps and ranked target lists with feature importance and uncertainty, enabling transparent ('glass-box') interpretation.
- Iterative re-training with new field data continuously improves models and decision quality.



Remote Sensing and Geophysical Al

BOTSWANA DIAMONDS PLC

- Multispectral/hyperspectral satellites and UAVs map alteration, structure and regolith; Al automates pixel-to-mineral information extraction.
- Machine Learning assisted inversion and clustering of gravity, magnetics, and EM improve depth estimates and structure/host recognition under cover.
- Joint inversion and data fusion reduce ambiguity by consistent geophysical application across multiple datasets simultaneously.
- These methods rapidly screen large areas to funnel scarce field budgets to the most prospective areas.



Javan et al, 2024

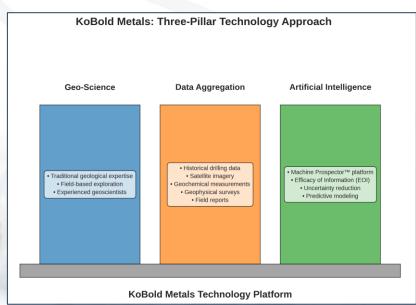
Data Fusion and Prospectivity Modelling

BOTSWANA DIAMONDS PLC

- Knowledge-driven rules (deposit models, expert features) are combined with data-driven learning to compute pixel-level prospectivity.
- Feature engineering captures litho-structural context (e.g., contacts, dilational jogs, dyke swarms, basin architecture) across scales.
- Ensembles (e.g., random forests, gradient boosting, deep nets) output class probabilities with uncertainty for ranked targeting.
- Model governance includes cross-validation, blind tests and sensitivity analysis to avoid over-fitting and spurious correlations.

Select Companies Applying Al

- KoBold Metals applies decision theoretical targeting ('Intelligent Prospector') to accelerate discovery of Cu-Ni-Co-Li deposits.
- Earth AI integrates in-house data science with nimble drilling capability, reporting materially higher drill-hit ratios than historical norms.
- Planetary AI (Xplore) couples knowledge models with Machine Learning for transparent prospectivity at local-to-country scales.
- Other players (e.g., GoldSpot, Mira) specialise in hyperspectral/geophysical Machine Learning and integrated targeting for clients.



Mining Doc, 2024

Case Study: KoBold Metals (Zambia Copper)

- Applied Machine Learning and decision analytics to legacy and new data, delineating the Mingomba orebody reported as Zambia's most significant copper discovery in a century.
- Rapid drill confirmation (~1 year) contrasts with typical multi-year campaigns in covered terranes.
- Portfolio scale and continuous model updates allow fast redeployment of learning across districts.
- Illustrates how algorithmic triage can prioritise scarce drilling for maximum information gain.
- Funded by Gates/Bezos with \$500M capital.

KoBold, 2024

Case Study: Earth Al (Australia)

BOTSWANA
DIAMONDS PLC

- Reports ~75% drill-hole success on Al-generated targets versus sub-1% historical norms for greenfields in similar terrains.
- Combines satellite analytics, geological Machine Learning and rapid drilling to close the loop between prediction and testing.
- Cost reductions of up to ~80% are cited through tighter drill focusing and fewer abandoned campaigns.
- Shows the value of owning both the data / Machine Learning pipeline and fast execution capability.

Earth Al unveils six new mineral prospects in Australia

Staff Writer | March 26, 2025 | 9:07 am Exploration Australia Cobalt Copper Gold Silver Tungsten

Earth AI says it can move from detecting a prospect to drill-testing in just three to six months. (Stock image generated with AI. By utaem2022 | Adobe Stock.)

Mining.com, 2025

Planetary Al 'Xplore' (Botswana)

BOTSWANA
DIAMONDS PLC

- Combines 57+ deposit models with Machine Learning to compute prospectivity at multiple scales ('glass-box' interpretability).
- Semantic methods capture geological context (e.g. proximity to structures, host lithologies, permissive facies).
- Delivers ranked target maps with quantified uncertainty, feature importance and recommended subsequent data acquisition to reduce risk, powered by Machine Learning for adaptive targeting and evidence-based prioritisation.
- Configured for governments and explorers;
 supports area selection, licensing and JV screening.

Shaping The Future Of Mineral Exploration

Streamlined prospectivity evaluation is a strategic step towards unlocking the socio-economic benefits of mineral resources while ensuring sustainability and long-term national interest

Efficient mineral prospectivity evaluation is crucial for countries, exploration and mining companies to unlock the potential of their mineral resources.

Systematic identification of areas with high geological potential can:

optimize resource allocation

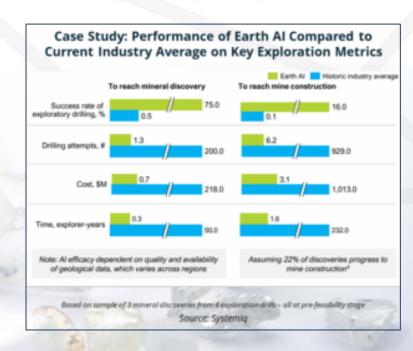
Xplore Global Prospectivity M

- attract responsible investment
- minimize environmental and economic risks
- guide governments in crafting policies, zoning regulations, and land-use planning

Xplore unlocks Mineral Wealth with Advanced Knowledge Driven Prospectivity Analysis combined with Machine Learning technologies

knowledge based geological models with cutting-edge machine learning, creating a transparent 'glass box' of interpretation. Understanding uncertainty, developing strategies to reduce cost and revealing prime mineral prospects.

Xplore incorporates 57 resource deposit models to interrogate all available geological data and interpret the geology. The deliverables are area, region or country scale mineral prospectivity maps that are based on proven geological principles.



PlanetaryAI, 2025

Al Cost and Time Benefits

BOTSWANA DIAMONDS PLC

- Al narrows search space early, focusing drilling on high-probability targets and lifting drill-hit ratios from sub-1% to orders-of-magnitude higher in some reports.
- Exploration cycles compress (planning → test → learn) through automated data prep, rapid modelling and adaptive survey design (4x faster).
- Claims of up to ~80% reduction in discovery cost reflect fewer false positives and better sequencing of work programs.
- At industry scale, modelling suggests
 multi-hundred-billion dollar annual savings by
 the mid-2030s if broadly adopted.

CleanTech, 2025

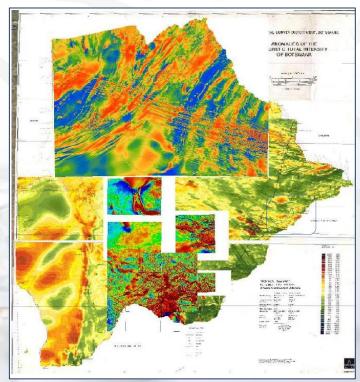
Differential Impact

Juniors

- Juniors can leverage AI to process large legacy datasets, lifting target quality without adding fixed headcount.
- Higher-confidence targets improve access to risk capital and strategic partners, shortening the 'orphan period'.
- Transparent, explainable outputs support investment committees and JV negotiations.
- Al-ready data rooms become a competitive asset when farming out or transacting licences.

<u>Majors</u>

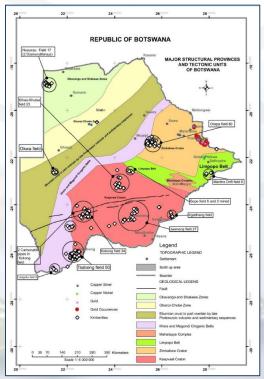
- Majors can apply AI at portfolio scale to rank districts, optimise capital allocation and integrate brownfields with greenfields.
- Standardised data governance and Machine Learning pipelines enable comparability across business units and countries.
- Decision analytics frameworks quantify trade-offs between resource replacement, optionality and ESG constraints.
- Al also improves brownfields targeting, extending mine life and smoothing reserve replacement profiles.



BOD strategy: dataset and Al-screened targets

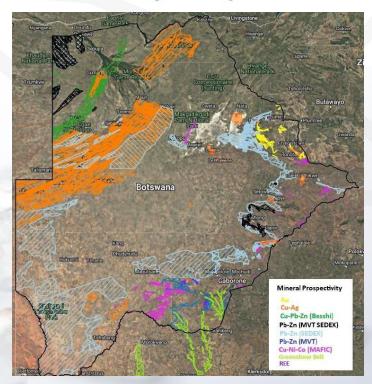
Botswana Diamonds plc (BOD): Strategy Overview

- BOD's strategy is to exploit a proprietary, comprehensive Botswana dataset accumulated over ~20 years and to apply AI for rapid prospectivity screening.
- Partnership with Planetary AI enables
 country-scale analysis before license applications,
 improving ground selection quality.
- Focus spans polymetallics (Cu-Ni-Co-Zn-Pb-Ag, PGEs) and diamonds, reflecting Botswana's metallogenic diversity.
- Objective is to secure high-potential ground, develop drill-ready targets and form value accretive JVs.



BOD Legacy Dataset: Scale & Composition

- ~225,000 km² of spatial coverage and ~383 GB of data comprising:
 - ~375,000 line km airborne geophysics,
 - 606 ground geophysical surveys,
 - ~358,000 soil sample results and
 - → ~32,000 drill logs.
- Datasets were standardised, georeferenced and fused for Al ingestion to ensure apples-to-apples comparisons across tiles.
- Coverage extends across Ngamiland, SE Botswana and other permissive belts, including kimberlite fields and mafic-ultramafic terranes.
- This scale permits consistent, unbiased target ranking from license to province.



BOD License Applications: Al-Screened Results

BOTSWANA DIAMONDS PLC

- First AI pass generated applications over
 ~7,500 km²: 11 polymetallic and 3 kimberlite
 targets meeting de-risking criteria.
- Selection emphasised permissive geology, multi-commodity potential and adjacency to undercapitalised neighbours.
- All ranking guides phased ground acquisition and JV approaches to stitch contiguous trends where appropriate.
- Field programs prioritise drill-ready targets while acquiring missing datasets to lift model confidence.

BOD's Competitive Advantage

Five Pillar approach

- Data. BOD already has an extensive database in Botswana and proposes to acquire more across Southern Africa.
- **Al technology**. BOD also has access to this through an alliance with Planetary Al Xplore, which utilises a proprietary platform which unlocks mineral wealth with advanced knowledge-driven prospectivity analysis combined with machine learning technologies.
- Government relations. The ability to apply for and receive Prospecting Licenses. BOD has
 a demonstrated track record in this regard in Southern Africa.
- Field and commercial skills. Once a Prospecting License has been granted, the ability
 to conduct field and other technical work to achieve a rapid commercial conclusion.
 BOD has a proven track record in this area and runs a very tight, lean company.

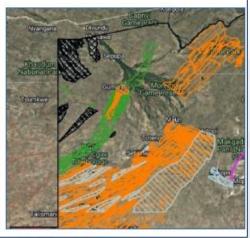
• (Cash ...)

Polymetallic and kimberlite examples

BOD Polymetallic Targeting: Examples

- Ngamiland terranes flagged as permissive for Cu-Pb-Zn-Ag with associated V-Co-Ge-Au-PGE signatures across multiple deposit styles.
- SE Botswana blocks prioritised for Cu-Ni-Co with ultramafic/mafic hosts and shear-related traps.
- Historic resources and showings (e.g., Zn-Pb-Ag) locally validate the predictive patterns highlighted by Al.
- Next steps: integrate new surface geochem/EM to tighten drill collars on top-ranked anomalies.

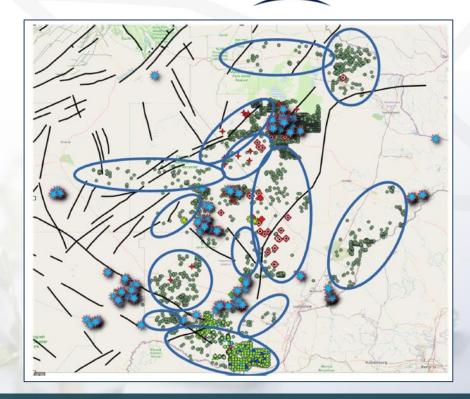
Ngamiland Copper, Zinc & Lead, Silver


Ngamiland terranes are permissive for Copper, Lead, Zinc, Silver + associated mineral potential (Vanadium, Cobalt, Germanium, gold & PGE's).

Minerals formed via 4 different deposit types enabling broad range of spatial occurrences and resource assemblages.

Historically less well explored part of Botswana but interest in the region is rapidly expanding with some promising results to data.

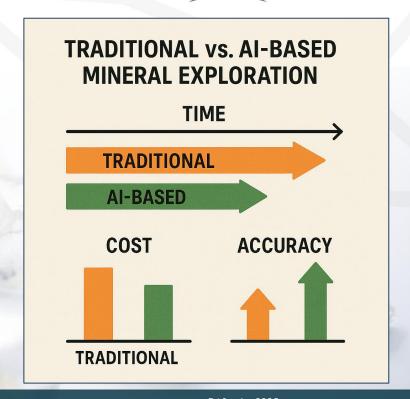
Region example:


Zinc/Lead/Silver/Germanium and Vanadium 2004 JORC compliant resources of 25 million tonnes @ 3% Zn/Pb together with 3.3 million ounces of Silver.

BOD Kimberlite Targeting: Examples

BOTSWANA
DIAMONDS PLC

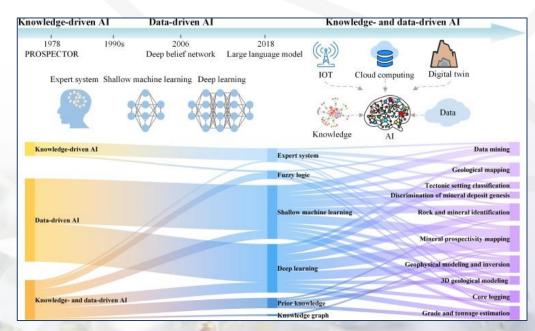
- Indicator mineral (KIM) differentiation isolates key garnet/spinel populations that drive dispersion trends.
- Geophysical context (gravity lows, moderate magnetics) is used to focus under-cover kimberlite searches.
- Clusters of KIMs far from known fields suggest undiscovered sources; cover thickness modelling informs exploration technique.
- Prospective clusters have been captured in granted licenses for follow-up ground geophysics and drill testing.



Al vs Traditional Exploration

BOTSWANA DIAMONDS PLC

- Traditional: sequential, expert-led overlay mapping; slow feedback and limited hypothesis throughput.
- AI-enabled: parallel hypothesis generation, probabilistic ranking and adaptive survey design with rapid feedback loops.
- Explainability and uncertainty quantification support disciplined 'stage-gate' decisions and budget defence.
- Outcomes reported to date show materially higher drill conversion and lower unit discovery cost.



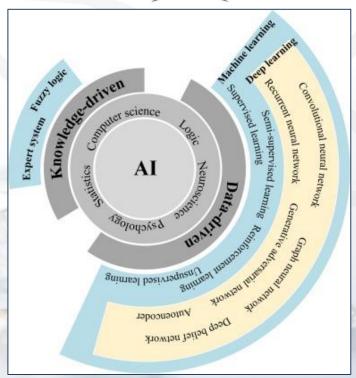
RASonly, 2025

Possible Future State (2030–2035)


- Digital twins of districts/ore bodies that update with drilling, sensing and operational data to guide real-time decisions.
- Autonomous UAVs and robotic drills integrated with active learning to test the highest potential holes first.
- Next-generation sensors (quantum gravimetry, improved hyperspectral) extend the depth of investigation beneath the cover.
- Skillset shift: geologists operate as domain-expert data scientists, curating features and governing models.

Policy, Investment and ESG Context

- Critical-minerals policies (US, EU and others) and strategic finance favour projects that demonstrate efficient, low-impact and successful commercial discovery.
- Al reduces unnecessary disturbance by focusing work on the highest-probability targets and documenting evidence trails.
- Transparent, auditable models strengthen stakeholder engagement and permit narratives.
- Botswana's stable jurisdiction and data-rich history are aligned with this investment thesis.



EY.com, 2024

Conclusions and Strategic Outlook

- Al is reshaping exploration economics by raising hit rates, compressing timelines and lowering unit costs across commodities and terrains.
- Botswana's geology, data depth and stability make it an ideal proving ground for Al-enabled exploration.
- For juniors, explainable Al improves financing potential; for majors, it enables portfolio-level optimisation and reserve replacement.
- Early adopters will capture outsized benefits as models, data assets and partnerships compound over time.

Yang et al, 2024

Thank You

Questions & Discussion

Photo: Andreas Stelzer

References

- International Energy Agency (2025). Global Critical Minerals Outlook. Paris: IEA.
- Botswana Diamonds plc (2024–2025). Strategy and AI exploration materials.
- Planetary AI. Xplore prospectivity platform overview and method notes.
- KoBold Metals case reports and industry coverage (e.g., Mining.com, Reuters).
- Earth AI technical briefs and public case studies (Australia).
- NASA Earth Observatory. Botswana diamond mines satellite imagery (contextual).
- Cleantech/industry analyses on AI in exploration and discovery efficiency.

About the Author

- James Campbell is Managing Director of Botswana Diamonds plc (a diamond development company active in Botswana, South Africa and Zimbabwe and listed on London AIM and the Botswana Stock Exchange). He has spent over forty years in the diamond industry in a variety of leadership roles both in major and junior companies.
- Previous roles include Non-Executive Director of Shefa Gems (where he is still Technical Advisor); Chief Executive Officer and President of Rockwell Diamonds Inc; Non-Executive Director of Stellar Diamonds plc; Vice President - New Business for Lucara Diamond Corp, Managing Director of African Diamonds plc; Executive Deputy Chairman of West African Diamonds plc and Director of Swala Resources plc and Bugeco sa.
- ◆ James also worked at De Beers for over twenty years; his roles included General Manager for Advanced Exploration and Resource Delivery and the Executive Chairman Nicky Oppenheimer's first Personal Assistant.
- ◆ James holds degrees in Mining and Exploration Geology from the Royal School of Mines (Imperial College, London University) and an MBA with distinction (and top student prize) from Durham University. He is a Fellow of the Geological Society of South Africa, Institute of Mining, Metallurgy and Materials, South African Institute of Mining and Metallurgy and Institute of Directors of South Africa. He is also a Chartered Engineer (UK), Chartered Scientist (UK) and a Professional Natural Scientist (RSA).
- ◆ James is also chairman and founding director of Common Purpose South Africa NPC (a not-for-profit organization that develops leaders who can cross boundaries and is synonymous with the terms 'cultural intelligence' and 'leadership beyond authority'). CPSA celebrated its twenty-fifth anniversary in 2025. He was also a director, trustee and chairman of the Joburg Ballet for almost fifteen years.

https://twitter.com/JAHC1 https://www.linkedin.com/in/jamesahcampbell/ https://www.slideshare.net/JamesAHCampbell1 https://www.youtube.com/JamesCampbell_JAC

162 Clontarf Road Clontarf Dublin 3 Ph: +27 83 457 3724

Web: <u>www.botswanadiamonds.co.uk</u>
Twitter: @BotswanaDiamond

Email: james@botswanadiamonds.co.uk